skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dugan, Hilary_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stormwater ponds are common features in urbanized landscapes because they enhance flood reduction and nutrient retention. With shallow depths and high inputs of organic matter, these systems can be highly productive with rapid oxygen depletion when thermally stratified or ice‐covered. However, most of our understanding of the biogeochemistry of stormwater ponds comes from the open water period. We explored under‐ice oxygen dynamics in 20 stormwater ponds in Madison, WI (USA) that were ice covered from late December to early March to investigate the drivers of bottom water oxygen saturation and the impact on the accumulation of carbon dioxide (CO2) and methane (CH4). Winter anoxia was driven by ice transmissivity, winter nutrient concentrations, and precedent summer productivity. Oxygen depletion led to overall higher concentrations of greenhouse gases in pond surface waters. This research enhances our understanding of winter pond biogeochemistry and its links to summer productivity. 
    more » « less
  2. Abstract Record high temperatures were documented in the McMurdo Dry Valleys, Antarctica, on 18 March 2022, exceeding average temperatures for that day by nearly 30°C. Satellite imagery and stream gage measurements indicate that surface wetting coincided with this warming more than 2 months after peak summer thaw and likely exceeded thresholds for rehydration and activation of resident organisms that typically survive the cold and dry conditions of the polar fall in a freeze‐dried state. This weather event is notable in both the timing and magnitude of the warming and wetting when temperatures exceeded 0°C at a time when biological communities and streams have typically entered a persistent frozen state. Such events may be a harbinger of future climate conditions characterized by warmer temperatures and greater thaw in this region of Antarctica, which could influence the distribution, activity, and abundance of sentinel taxa. Here we describe the ecosystem responses to this weather anomaly reporting on meteorological and hydrological measurements across the region and on later biological observations from Canada Stream, one of the most diverse and productive ecosystems within the McMurdo Dry Valleys. 
    more » « less
  3. Abstract The rate of technological innovation within aquatic sciences outpaces the collective ability of individual scientists within the field to make appropriate use of those technologies. The process of in situ lake sampling remains the primary choice to comprehensively understand an aquatic ecosystem at local scales; however, the impact of climate change on lakes necessitates the rapid advancement of understanding and the incorporation of lakes on both landscape and global scales. Three fields driving innovation within winter limnology that we address here are autonomous real‐time in situ monitoring, remote sensing, and modeling. The recent progress in low‐power in situ sensing and data telemetry allows continuous tracing of under‐ice processes in selected lakes as well as the development of global lake observational networks. Remote sensing offers consistent monitoring of numerous systems, allowing limnologists to ask certain questions across large scales. Models are advancing and historically come in different types (process‐based or statistical data‐driven), with the recent technological advancements and integration of machine learning and hybrid process‐based/statistical models. Lake ice modeling enhances our understanding of lake dynamics and allows for projections under future climate warming scenarios. To encourage the merging of technological innovation within limnological research of the less‐studied winter period, we have accumulated both essential details on the history and uses of contemporary sampling, remote sensing, and modeling techniques. We crafted 100 questions in the field of winter limnology that aim to facilitate the cross‐pollination of intensive and extensive modes of study to broaden knowledge of the winter period. 
    more » « less